苏州大学光电科学与工程学院欢迎您

李孝峰组与Monash大学鲍桥梁组合作在Adv. Opt. Mater.上发表论文

发布者:王晴发布时间:2019-06-04浏览次数:10


题目: Physics and Optoelectronic Simulation of Photodetectors Based on 2D Materials


作者: Guoyang Cao1, 2, Yidan An1, 2, Qiaoliang Bao3, Xiaofeng Li1, 2*


单位:

1. School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006 China

3. Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low‐Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria, 3800 Australia


摘要: 2D‐material‐based photodetectors (2DMPDs) have attracted broad interest due to their many unique benefits (e.g., their giant photoresponsivity). However, a thorough device‐level simulation, which takes into account optical absorption, electrical transportation, and semiconductor material properties, is still challenging. This study reports the realization of a comprehensive optoelectronic simulation of 2DMPDs in multidimensional and multiphysics domains. This work begins with a simulation of conventional monolayer photoresistor detectors by introducing basic theories and simulation technologies. In particular, the trap effect, which is highly important for regulating the photoresponse of 2D devices, is successfully introduced into the simulation so that very good agreement between the simulation and an experiment is realized. The simulation is extended to popular monolayer phototransistors so that precise quantitative evaluations of the optoelectronic device performance, such as the output characteristics, transfer properties, responsivity, response time, and detectivity, become very convenient. Furthermore, a time‐domain device simulation is implemented, which allows to study the modulation characteristics of 2DMPDs. The device‐level simulation provides a useful platform for studying and optimally designing advanced 2DMPDs. For example, this simulation is convenient for studying the balance between photoresponsivity and response time in 2DMPDs.


影响因子: 7.43


分区情况: 一区


链接: https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900410